$\gamma = 82.125 \ (7)^{\circ}$

Z = 2

V = 1043.82 (18) Å³

 $0.60 \times 0.20 \times 0.10 \text{ mm}$

4006 independent reflections 3627 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.38 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.035$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4,5-dihydro-1*H*-imidazol-3-ium 7,8-dihydroimidazo[1,2-c][1,3,5]thiadiazine-2,4(6*H*)-dithione(1-) dimethylformamide disolvate

Maria Gdaniec,^a* Jarosław Saczewski^b and Franciszek Saczewski^b

^aFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland, and ^bDepartment of Chemical Technology of Drugs, Medical University of Gdańsk, 80-416 Gdańsk, Poland Correspondence e-mail: magdan@amu.edu.pl

Received 18 June 2007; accepted 22 June 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.037; *wR* factor = 0.088; data-to-parameter ratio = 15.3.

The structure of the title compound, $C_5H_4N_3S_3-C_3H_8N_3^+$.-2 C_3H_7NO , has been determined from a non-merohedral twin. The asymmetric unit consists of a heterocyclic anion, a guanidinium-type cation and two dimethylformamide solvent molecules. The three C–N bond lengths in the guanidinium fragment range from 1.315 (3) to 1.342 (3) Å, the shortest bond being to the exocyclic amino group. The anion and cation are connected *via* a pair of N–H···N hydrogen bonds and the two solvent molecules are linked to this ion pair *via* N–H···O hydrogen bonds.

Related literature

For synthesis and crystallographic data reported earlier for the title compound, see Saczewski *et al.* (2003). For related literature, see: Allen (2002); Cooper *et al.* (2002); Farrugia (1999).

Experimental

Crystal data

 $C_{3}H_{8}N_{3}^{+}\cdot C_{5}H_{4}N_{3}S_{3}^{-}\cdot 2C_{3}H_{7}NO$ $M_{r} = 434.61$ Triclinic, $P\overline{1}$ a = 6.8301 (7) Å b = 12.1321 (14) Å c = 12.9487 (10) Å $\alpha = 79.232$ (7)° $\beta = 89.907$ (7)°

Data collection

Kuma KM-4-CCD κ-geometry diffractometer Absorption correction: none 8801 measured reflections

Refinement

WK(F) = 0.088 Independent and constrain	e of
S = 1.12 rennement	ea
4006 reflections $\Delta \rho_{max} = 0.26$ e Å $^{-3}$ 261 parameters $\Delta \rho_{min} = -0.28$ e Å $^{-3}$	

Table 1

Hvdrogen-bond	geometry	(Å.	°).
riyurogen bonu	geometry	(1 1 ,	<i>.</i>

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1B - H1B \cdot \cdot \cdot N7A$	0.81 (3)	2.11 (3)	2.916 (3)	178 (3)
$N3B - H3B \cdot \cdot \cdot O1D$	0.81(3)	2.07 (3)	2.806 (3)	153 (2)
$N6B - H6BB \cdot \cdot \cdot N1A$	0.81(3)	2.14 (3)	2.952 (3)	173 (3)
$N6B - H6BA \cdots O1C$	0.85 (2)	1.98 (3)	2.827 (3)	174 (3)

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *Stereochemical Workstation Operation Manual* (Siemens, 1989) and *Mercury* (Version 1.4; Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2169).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J. Appl. Cryst. 35, 168–174.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Oxford Diffraction (2003). *CrysAlis CCD* and *CrysAlis RED*. Versions 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Saczewski, F., Saczewski, J. & Gdaniec, M. (2003). J. Org. Chem. 68, 4791–4796.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, o3329 [doi:10.1107/S1600536807030590]

2-Amino-4,5-dihydro-1*H*-imidazol-3-ium 7,8-dihydroimidazo[1,2-*c*][1,3,5]thiadiazine-2,4(6*H*)-dithione(1-) dimethylformamide disolvate

M. Gdaniec, J. Saczewski and F. Saczewski

Comment

In course of our research on the reactivity of 2-hydroxylamino-4,5-dihydroimidazolium-O-sulfonate, it was reacted with carbon disulfide in aqueous NaOH, forming, unexpectedly, the salt of 2-aminoimidazoline and 7,8-dihydroimidazo [1,2-c][1,3,5]thiadiazine-2,4(6H)-dithione (Saczewski *et al.*, 2003). The crystal structure of (I) has been solved based on diffraction data collected for a twinned specimen. The structure was refined to a R1 factor = 0.20 but twinning was not taken into account, neither at the data processing stage nor during refinement. The structure just served to confirm the connectivity of atoms deduced from spectroscopic methods. When we noticed that this is the first crystal structure of a 2-aminoimdazoline in the Cambridge Structural Databank (Allen, 2002) we decided to refine this structure taking twinning into account. Here, we present the structure of (I) refined as a nonmerohedral twin.

The asymmetric unit is shown in Fig. 1. The cation and anion are linked *via* two N—H···N hydrogen bonds into an ionic pair and the two solvate molecule are joined *via* N—H···O interactions to the cation, thus forming discrete hydrogen-bonded assemblies. The five-membered ring of the 2-aminoimidazolinium cation, with the largest endocyclic torsion angle of 15.8 (2)°, forms a slightly puckered half-chair. The three C—N bonds of the guanidinium fragment in the cation range from 1.315 (3) to 1.342 (3) Å, with the shortest bond being to the exocyclic amino group and the longest to the ring N3 atom exhibiting slightly pyramidal *sp*² hybridization. Deprotonation has an enormous influence on the geometry of the 7,8-di-hydroimidazo[1,2-*c*][1,3,5]thiadiazine-2,4(6*H*)dithione molecule. For example, in the neutral form, with the acidic proton bonded to N7A (Saczewski *et al.*, 2003), the endocyclic bond angle at this atom is 113.72(16.)° whereas in the ionic form this angle is much smaller, 108.93 (17)°. Bond lengths are also strongly altered and, for example, the N1A—C6A bond length changes from 1.323 (2) in the neutral acid to 1.373 (3) Å in the anion.

Experimental

The title compound was prepared according to the known procedure (Saczewski *et al.*, 2003). Crystals for X-ray analysis were obtained by recrystallization from a dimethylformamide solution of (I).

Refinement

The twin matrix, $1\ 0\ 0\ 0.475 - 1\ 0\ 0.003\ 0 - 1$, corresponding to 180° rotation about [100] direct lattice direction has been determined with the program ROTAX (Cooper *et al.*, 2002). For the refinement with the *SHELXL97* program (Sheldrick, 1997), the reflection data file was prepared in the HKLF 5 format using the 'Make HKLF5' function of the *WinGX* program (Farrugia, 1999). The overlapping reflections and those belonging to only one twin domain are used in the refinement (HKLF 5 format of *SHELXL*). Those which were excluded, 250 reflections, are partial overlaps which could not be integrated properly at the data processing stage.

The H atoms of the N—H groups were freely refined. The H atoms bonded to C atoms were placed at calculated positions, with C—H = 0.95–0.99 Å, and refined as riding on their parent atoms, with $U_{iso}(H) = x U_{eq}(C)$, where x = 1.5 for the H atoms from methyl groups and x = 1.2 for the remaining H atoms.

Figures

Fig. 1. Asymmetric unit of (I) showing atom labelling scheme and displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. Crystal packing shown down the a-axis. Hydrogen bonds are shown as dashed lines.

2-Amino-4,5-dihydro-1*H*-imidazol-3-ium 7,8-dihydroimidazo[1,2-c][1,3,5]thiadiazine-2,4(6*H*)-dithione(1-) dimethylformamide disolvate

Crystal data

Z = 2
$F_{000} = 460$
$D_{\rm x} = 1.383 {\rm ~Mg~m}^{-3}$
Melting point: 447 K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 2455 reflections
$\theta = 4.0-25.0^{\circ}$
$\mu = 0.38 \text{ mm}^{-1}$
T = 120 (2) K
Prism, yellow
$0.60 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Kuma KM-4-CCD κ-geometry diffractometer	3627 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Monochromator: graphite	$\theta_{\text{max}} = 26.5^{\circ}$
T = 120(2) K	$\theta_{\min} = 4.2^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: none	$k = -15 \rightarrow 15$
8801 measured reflections	$l = -16 \rightarrow 16$

4006 independent reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 0.3779P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{max} < 0.001$
4006 reflections	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
261 parameters	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Fatingtian competions news

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1A	0.74388 (10)	-0.03696 (5)	0.69870 (4)	0.02750 (15)
S2A	0.73548 (10)	-0.34589 (5)	1.09680 (5)	0.02675 (15)
N1A	0.7458 (3)	0.01169 (14)	0.88951 (13)	0.0205 (4)
C2A	0.7457 (3)	-0.06552 (17)	0.83134 (16)	0.0194 (4)
S3A	0.74710 (10)	-0.21218 (4)	0.88413 (4)	0.02568 (15)
C4A	0.7430 (3)	-0.22047 (17)	1.02092 (17)	0.0199 (5)
N5A	0.7464 (3)	-0.12406 (14)	1.05684 (13)	0.0192 (4)
C6A	0.7493 (3)	-0.01300 (17)	0.99742 (16)	0.0190 (4)
N7A	0.7534 (3)	0.06311 (14)	1.05371 (13)	0.0224 (4)
C8A	0.7578 (4)	0.00908 (18)	1.16541 (16)	0.0222 (5)
H8B	0.6442	0.0435	1.2016	0.027*
H8A	0.8815	0.0187	1.2004	0.027*
C9A	0.7465 (4)	-0.11769 (17)	1.16928 (16)	0.0224 (5)
H9B	0.8624	-0.1660	1.2074	0.027*
H9A	0.6240	-0.1401	1.2028	0.027*
N1B	0.7728 (3)	0.28829 (16)	0.93022 (15)	0.0236 (4)
H1B	0.765 (4)	0.227 (2)	0.965 (2)	0.027 (7)*

C2B	0.7435 (3)	0.31567 (17)	0.82677 (18)	0.0224 (5)
N3B	0.7231 (3)	0.42843 (15)	0.79407 (16)	0.0263 (5)
H3B	0.750 (4)	0.456 (2)	0.735 (2)	0.020 (6)*
C4B	0.7636 (4)	0.48437 (18)	0.88018 (18)	0.0280 (5)
H4BA	0.6611	0.5497	0.8833	0.034*
H4BB	0.8950	0.5105	0.8738	0.034*
C5B	0.7578 (4)	0.38891 (18)	0.97749 (18)	0.0266 (5)
H5BA	0.8704	0.3851	1.0267	0.032*
H5BB	0.6325	0.3996	1.0152	0.032*
N6B	0.7384 (3)	0.24212 (17)	0.76439 (17)	0.0275 (5)
H6BB	0.742 (4)	0.177 (2)	0.794 (2)	0.032 (7)*
H6BA	0.717 (4)	0.2707 (19)	0.700 (2)	0.020 (6)*
O1C	0.6385 (3)	0.33821 (18)	0.55175 (14)	0.0496 (5)
N1C	0.6926 (3)	0.29562 (18)	0.38911 (15)	0.0336 (5)
C1C	0.6495 (4)	0.3658 (2)	0.4563 (2)	0.0388 (6)
H1CA	0.6252	0.4445	0.4274	0.047*
C2C	0.7292 (5)	0.1734 (2)	0.4252 (2)	0.0477 (7)
H2CA	0.7208	0.1559	0.5019	0.072*
H2CB	0.8614	0.1441	0.4045	0.072*
H2CC	0.6301	0.1379	0.3934	0.072*
C3C	0.7023 (5)	0.3360 (3)	0.2762 (2)	0.0536 (8)
H3CA	0.6770	0.4190	0.2610	0.080*
НЗСВ	0.6024	0.3056	0.2397	0.080*
H3CC	0.8340	0.3106	0.2521	0.080*
O1D	0.8400 (3)	0.58284 (15)	0.62367 (14)	0.0491 (5)
N1D	0.8126 (3)	0.72687 (15)	0.48209 (14)	0.0252 (4)
C1D	0.8103 (4)	0.6845 (2)	0.58456 (18)	0.0330 (6)
H1D	0.7839	0.7366	0.6310	0.040*
C2D	0.8469 (4)	0.65334 (19)	0.40540 (19)	0.0325 (6)
H2DA	0.8733	0.5742	0.4419	0.049*
H2DB	0.9610	0.6726	0.3632	0.049*
H2DC	0.7296	0.6635	0.3593	0.049*
C3D	0.7716 (5)	0.84823 (19)	0.44212 (18)	0.0374 (7)
H3DA	0.7507	0.8883	0.5012	0.056*
H3DB	0.6526	0.8647	0.3967	0.056*
H3DC	0.8839	0.8734	0.4016	0.056*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0346 (4)	0.0317 (3)	0.0166 (3)	-0.0039 (3)	0.0002 (3)	-0.0062 (2)
S2A	0.0287 (3)	0.0186 (3)	0.0310 (3)	-0.0042 (2)	0.0013 (2)	0.0009 (2)
N1A	0.0238 (11)	0.0208 (8)	0.0162 (8)	-0.0017 (8)	-0.0001 (8)	-0.0026 (7)
C2A	0.0159 (12)	0.0216 (10)	0.0201 (10)	-0.0011 (9)	-0.0014 (9)	-0.0030 (8)
S3A	0.0347 (4)	0.0194 (3)	0.0233 (3)	-0.0025 (2)	-0.0010 (2)	-0.0058 (2)
C4A	0.0134 (12)	0.0206 (10)	0.0248 (11)	-0.0019 (8)	-0.0021 (9)	-0.0021 (8)
N5A	0.0210 (10)	0.0190 (8)	0.0159 (8)	0.0007 (7)	-0.0003 (7)	-0.0016 (6)
C6A	0.0191 (11)	0.0187 (10)	0.0170 (9)	0.0005 (8)	0.0001 (9)	0.0000 (8)

N7A	0.0285 (11)	0.0222 (9)	0.0168 (8)	-0.0033 (8)	-0.0006 (8)	-0.0043 (7)
C8A	0.0243 (13)	0.0270 (11)	0.0163 (10)	-0.0043 (10)	0.0006 (9)	-0.0059 (8)
C9A	0.0233 (13)	0.0248 (11)	0.0179 (10)	-0.0011 (9)	-0.0005 (9)	-0.0022 (8)
N1B	0.0294 (12)	0.0172 (9)	0.0232 (9)	-0.0038 (8)	0.0002 (8)	-0.0006 (8)
C2B	0.0174 (12)	0.0193 (10)	0.0290 (11)	-0.0008 (9)	0.0029 (9)	-0.0022 (9)
N3B	0.0334 (13)	0.0183 (9)	0.0262 (10)	-0.0053 (8)	0.0057 (9)	-0.0003 (8)
C4B	0.0313 (14)	0.0182 (10)	0.0343 (13)	-0.0034 (9)	0.0017 (11)	-0.0046 (9)
C5B	0.0284 (14)	0.0236 (11)	0.0286 (12)	-0.0027 (10)	0.0007 (10)	-0.0075 (9)
N6B	0.0377 (13)	0.0207 (10)	0.0237 (10)	-0.0047 (9)	0.0026 (9)	-0.0030 (8)
O1C	0.0513 (14)	0.0707 (14)	0.0281 (10)	-0.0133 (11)	-0.0030 (9)	-0.0089 (9)
N1C	0.0322 (13)	0.0425 (12)	0.0232 (10)	-0.0066 (10)	-0.0023 (9)	0.0024 (9)
C1C	0.0346 (17)	0.0461 (15)	0.0365 (14)	-0.0132 (13)	-0.0034 (13)	-0.0041 (12)
C2C	0.047 (2)	0.0425 (15)	0.0499 (17)	-0.0003 (14)	0.0001 (15)	-0.0027 (13)
C3C	0.053 (2)	0.074 (2)	0.0271 (13)	-0.0011 (17)	-0.0008 (14)	0.0007 (13)
O1D	0.0645 (15)	0.0369 (10)	0.0366 (10)	-0.0008 (10)	0.0105 (10)	0.0126 (8)
N1D	0.0314 (12)	0.0224 (9)	0.0207 (9)	-0.0032 (8)	0.0014 (9)	-0.0016 (7)
C1D	0.0376 (16)	0.0335 (12)	0.0251 (12)	-0.0045 (11)	0.0047 (11)	0.0013 (10)
C2D	0.0391 (16)	0.0282 (12)	0.0300 (12)	-0.0010 (11)	0.0039 (12)	-0.0073 (10)
C3D	0.063 (2)	0.0230 (11)	0.0244 (12)	-0.0014 (12)	-0.0032 (13)	-0.0034 (9)

Geometric parameters (Å, °)

S1A—C2A	1.687 (2)	C5B—H5BA	0.9900
S2A—C4A	1.657 (2)	C5B—H5BB	0.9900
N1A—C2A	1.307 (3)	N6B—H6BB	0.81 (3)
N1A—C6A	1.373 (3)	N6B—H6BA	0.85 (2)
C2A—S3A	1.782 (2)	O1C—C1C	1.224 (3)
S3A—C4A	1.756 (2)	N1C—C1C	1.333 (3)
C4A—N5A	1.340 (3)	N1C—C2C	1.456 (3)
N5A—C6A	1.424 (3)	N1C—C3C	1.457 (3)
N5A—C9A	1.472 (3)	C1C—H1CA	0.9500
C6A—N7A	1.282 (3)	C2C—H2CA	0.9800
N7A—C8A	1.471 (2)	C2C—H2CB	0.9800
C8A—C9A	1.542 (3)	C2C—H2CC	0.9800
C8A—H8B	0.9900	СЗС—НЗСА	0.9800
C8A—H8A	0.9900	СЗС—НЗСВ	0.9800
С9А—Н9В	0.9900	СЗС—НЗСС	0.9800
С9А—Н9А	0.9900	O1D—C1D	1.232 (3)
N1B—C2B	1.327 (3)	N1D—C1D	1.331 (3)
N1B—C5B	1.456 (3)	N1D—C2D	1.452 (3)
N1B—H1B	0.81 (3)	N1D—C3D	1.455 (3)
C2B—N6B	1.315 (3)	C1D—H1D	0.9500
C2B—N3B	1.342 (3)	C2D—H2DA	0.9800
N3B—C4B	1.455 (3)	C2D—H2DB	0.9800
N3B—H3B	0.81 (3)	C2D—H2DC	0.9800
C4B—C5B	1.548 (3)	C3D—H3DA	0.9800
C4B—H4BA	0.9900	C3D—H3DB	0.9800
C4B—H4BB	0.9900	C3D—H3DC	0.9800
C2A—N1A—C6A	123.01 (17)	С4В—С5В—Н5ВА	111.3

N1A—C2A—S1A	123.67 (16)	N1B—C5B—H5BB	111.3
N1A—C2A—S3A	123.39 (15)	C4B—C5B—H5BB	111.3
S1A—C2A—S3A	112.95 (12)	H5BA—C5B—H5BB	109.2
C4A—S3A—C2A	104.71 (10)	C2B—N6B—H6BB	115.3 (19)
N5A—C4A—S2A	124.40 (16)	C2B—N6B—H6BA	115.2 (16)
N5A—C4A—S3A	117.30 (15)	H6BB—N6B—H6BA	129 (2)
S2A—C4A—S3A	118.30 (12)	C1C—N1C—C2C	121.3 (2)
C4A—N5A—C6A	128.01 (17)	C1C—N1C—C3C	122.3 (2)
C4A—N5A—C9A	123.64 (17)	C2C—N1C—C3C	116.4 (2)
C6A—N5A—C9A	108.35 (16)	O1C—C1C—N1C	126.0 (3)
N7A—C6A—N1A	122.48 (18)	O1C-C1C-H1CA	117.0
N7A—C6A—N5A	114.00 (18)	N1C—C1C—H1CA	117.0
N1A—C6A—N5A	123.52 (18)	N1C—C2C—H2CA	109.5
C6A—N7A—C8A	108.93 (17)	N1C—C2C—H2CB	109.5
N7A—C8A—C9A	106.84 (16)	H2CA—C2C—H2CB	109.5
N7A—C8A—H8B	110.4	N1C—C2C—H2CC	109.5
С9А—С8А—Н8В	110.4	H2CA—C2C—H2CC	109.5
N7A—C8A—H8A	110.4	H2CB—C2C—H2CC	109.5
С9А—С8А—Н8А	110.4	N1C—C3C—H3CA	109.5
H8B—C8A—H8A	108.6	N1C—C3C—H3CB	109.5
N5A—C9A—C8A	101.81 (15)	НЗСА—СЗС—НЗСВ	109.5
N5A—C9A—H9B	111.4	N1C—C3C—H3CC	109.5
С8А—С9А—Н9В	111.4	НЗСА—СЗС—НЗСС	109.5
N5A—C9A—H9A	111.4	H3CB—C3C—H3CC	109.5
С8А—С9А—Н9А	111.4	C1D—N1D—C2D	121.24 (19)
Н9В—С9А—Н9А	109.3	C1D—N1D—C3D	121.4 (2)
C2B—N1B—C5B	111.22 (18)	C2D—N1D—C3D	117.33 (18)
C2B—N1B—H1B	124.7 (18)	OID—CID—NID	124.8 (2)
C5B—N1B—H1B	121.5 (18)	O1D—C1D—H1D	117.6
N6B—C2B—N1B	124.5 (2)	N1D—C1D—H1D	117.6
N6B—C2B—N3B	1245(2)	N1D—C2D—H2DA	109.5
N1B-C2B-N3B	1110(2)	N1D—C2D—H2DB	109.5
C2B = N3B = C4B	110.62.(19)	H2DA—C2D—H2DB	109.5
C2B—N3B—H3B	120.9(17)	N1D-C2D-H2DC	109.5
C4B—N3B—H3B	119 5 (18)	$H^2DA - C^2D - H^2DC$	109.5
N3B - C4B - C5B	102 30 (17)	H^2DB C^2D H^2DC	109.5
N3B—C4B—H4BA	111.3	N1D-C3D-H3DA	109.5
C5B-C4B-H4BA	111.3	N1D—C3D—H3DB	109.5
N3B—C4B—H4BB	111.3	H3DA—C3D—H3DB	109.5
C5B-C4B-H4BB	111.3	N1D-C3D-H3DC	109.5
H4BA - C4B - H4BB	109.2	H3DA - C3D - H3DC	109.5
N1B-C5B-C4B	102.14 (18)	H3DB—C3D—H3DC	109.5
N1B_C5B_H5BA	111.3	hibb eib hibe	109.5
	170.22 (17)		1 1 (2)
CA = NIA = C2A = S2A	-1/9.33(1/)	$N_{A} = C_{A} = N_{A} = C_{A} = C_{A}$	1.1(3)
UDA-NIA-UZA-S3A	0.8(3)	CA = N/A = CA = C9A	-2.4(3)
N1A - C2A - S3A - C4A	1.5 (2)	CA = N5A = C9A = C8A	1/8.2 (2)
S1A - U2A - S3A - U4A	-1/8.6/(13)	COA-NOA-COA-COA	-2.1(2)
C2A—S3A—C4A—N5A	-2.1 (2)	N/A—C8A—C9A—N5A	2.6 (2)
C2A—S3A—C4A—S2A	177.92 (14)	C5B—N1B—C2B—N6B	-176.4 (2)

S2A—C4A—N5A—C6A	-178.78 (18)	C5B—N1B—C2B—N3B	4.6 (3)
S3A—C4A—N5A—C6A	1.2 (3)	N6B—C2B—N3B—C4B	-172.0 (2)
S2A-C4A-N5A-C9A	0.9 (3)	N1B—C2B—N3B—C4B	7.0 (3)
S3A—C4A—N5A—C9A	-179.10 (17)	C2B—N3B—C4B—C5B	-14.5 (3)
C2A—N1A—C6A—N7A	178.6 (2)	C2B—N1B—C5B—C4B	-13.1 (3)
C2A—N1A—C6A—N5A	-2.2 (4)	N3B-C4B-C5B-N1B	15.8 (2)
C4A—N5A—C6A—N7A	-179.6 (2)	C2C-N1C-C1C-01C	1.0 (5)
C9A—N5A—C6A—N7A	0.7 (3)	C3C—N1C—C1C—O1C	179.9 (3)
C4A—N5A—C6A—N1A	1.1 (4)	C2D—N1D—C1D—O1D	1.5 (4)
C9A—N5A—C6A—N1A	-178.6 (2)	C3D—N1D—C1D—O1D	178.6 (3)
N1A—C6A—N7A—C8A	-179.6 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1B—H1B…N7A	0.81 (3)	2.11 (3)	2.916 (3)	178 (3)
N3B—H3B…O1D	0.81 (3)	2.07 (3)	2.806 (3)	153 (2)
N6B—H6BB···N1A	0.81 (3)	2.14 (3)	2.952 (3)	173 (3)
N6B—H6BA…O1C	0.85 (2)	1.98 (3)	2.827 (3)	174 (3)

Fig. 1

